SELAMAT DATANG DI BLOG EDDY SERVICE

SERVICE ELEKTRONIK, KOMPUTER, PARABOLA, CCTV

SERVICE BARANG-BARANG ELEKTRONIK RUMAH TANGGA

TV (CRT-LCD-LED), DVD, SP.AKTIF, AMPLIFIER, MESIN CUCI (MANUAL-OTOMATIS), KULKAS, FREZER, DLL.

SERVICE BARANG-BARANG ELEKTRONIK KANTORAN

MONITOR (CRT-LCD-LED), DEKSTOP PC, LAPTOP, NOTEBOOK, PRINTER, DLL.

SERVICE DAN INSTALASI / PEMASANGAN PARABOLA

C-BAND, KU-BAND, PAY TV / BERLANGGANAN, NINMEDIA,

SERVICE DAN INSTALASI / PEMASANGAN CCTV

STANDAR CCTV, HIDDEN CCTV, SPY CCTV,

Thursday, 9 May 2013

Mengenal Komponen Elektronika : Transformator (T)

TRANSFORMATOR


Transformator step-down
adaptor
Adaptor AC-DC merupakan peranti yang menggunakan transformator step-down
Transformator atau trafo adalah alat yang memindahkan tenaga listrik antar dua rangkaian listrik atau lebih melalui induksi elektromagnetik.

PRINSIP KERJA

Transformator bekerja berdasarkan prinsip induksi elektromagnetik. Tegangan masukan bolak-balik yang membentangi primer menimbulkan fluks magnetyang idealnya semua bersambung dengan lilitan sekunder. Fluks bolak-balik ini menginduksikan gaya gerak listrik (ggl) dalam lilitan sekunder. Jika efisiensi sempurna, semua daya pada lilitan primer akan dilimpahkan ke lilitan sekunder.

JENIS


lambang transformator step-up
Transformator step-up adalah transformator yang memiliki lilitan sekunder lebih banyak daripada lilitan primer, sehingga berfungsi sebagai penaik tegangan. Transformator ini biasa ditemui pada pembangkit tenaga listrik sebagai penaik tegangan yang dihasilkan generator menjadi tegangan tinggi yang digunakan dalam transmisi jarak jauh.

Step-Down


skema transformator step-down
Transformator step-down memiliki lilitan sekunder lebih sedikit daripada lilitan primer, sehingga berfungsi sebagai penurun tegangan. Transformator jenis ini sangat mudah ditemui, terutama dalamadaptor AC-DC.

Autotransformator


skema autotransformator
Transformator jenis ini hanya terdiri dari satu lilitan yang berlanjut secara listrik, dengan sadapan tengah. Dalam transformator ini, sebagian lilitan primer juga merupakan lilitan sekunder. Fasa arus dalam lilitan sekunder selalu berlawanan dengan arus primer, sehingga untuk tarif daya yang sama lilitan sekunder bisa dibuat dengan kawat yang lebih tipis dibandingkan transformator biasa. Keuntungan dari autotransformator adalah ukuran fisiknya yang kecil dan kerugian yang lebih rendah daripada jenis dua lilitan. Tetapi transformator jenis ini tidak dapat memberikan isolasi secara listrik antara lilitan primer dengan lilitan sekunder.
Selain itu, autotransformator tidak dapat digunakan sebagai penaik tegangan lebih dari beberapa kali lipat (biasanya tidak lebih dari 1,5 kali).

Autotransformator variabel


skema autotransformator variabel
Autotransformator variabel sebenarnya adalah autotransformator biasa yang sadapan tengahnya bisa diubah-ubah, memberikan perbandingan lilitan primer-sekunder yang berubah-ubah.

Transformator isolasi

Transformator isolasi memiliki lilitan sekunder yang berjumlah sama dengan lilitan primer, sehingga tegangan sekunder sama dengan tegangan primer. Tetapi pada beberapa desain, gulungan sekunder dibuat sedikit lebih banyak untuk mengkompensasi kerugian. Transformator seperti ini berfungsi sebagai isolasi antara dua kalang. Untuk penerapan audio, transformator jenis ini telah banyak digantikan oleh kopling

Transformator pulsa

Transformator pulsa adalah transformator yang didesain khusus untuk memberikan keluaran gelombang pulsa. Transformator jenis ini menggunakan material inti yang cepat jenuh sehingga setelah arus primer mencapai titik tertentu, fluks magnet berhenti berubah. Karena GGL induksi pada lilitan sekunder hanya terbentuk jika terjadi perubahan fluks magnet, transformator hanya memberikan keluaran saat inti tidak jenuh, yaitu saat arus pada lilitan primer berbalik arah.

Transformator tiga fase

Transformator tiga fase (3-phase) sebenarnya adalah tiga transformator yang dihubungkan secara khusus satu sama lain. Lilitan primer biasanya dihubungkan secara bintang (Y) dan lilitan sekunder dihubungkan secara delta ().

Hubungan primer-sekunder

transformator scheme ru.svg

Fluks pada transformator
Rumus untuk fluks magnet yang ditimbulkan lilitan primer adalah dan rumus untuk ggl. induksi yang terjadi di lilitan sekunder adalah .
Karena kedua kumparan dihubungkan dengan fluks yang sama, maka 
Dengan menyusun ulang persamaan akan didapat  Dari rumus-rumus di atas, didapat pula: 
Dengan kata lain, hubungan antara tegangan primer dengan tegangan sekunder ditentukan oleh perbandingan jumlah lilitan primer dengan lilitan sekunder.

Kerugian dalam transformator

Perhitungan di atas hanya berlaku apabila kopling primer-sekunder sempurna dan tidak ada kerugian, tetapi dalam praktik terjadi beberapa kerugian yaitu
  1. kerugian tembaga. Kerugian  dalam lilitan tembaga yang disebabkan oleh resistansi tembaga dan arus listrikyang mengalirinya.
  2. Kerugian kopling. Kerugian yang terjadi karena kopling primer-sekunder tidak sempurna, sehingga tidak semua fluks magnet yang diinduksikan primer memotong lilitan sekunder. Kerugian ini dapat dikurangi dengan menggulung lilitan secara berlapis-lapis antara primer dan sekunder.
  3. Kerugian kapasitas liar. Kerugian yang disebabkan oleh kapasitas liar yang terdapat pada lilitan-lilitan transformator. Kerugian ini sangat memengaruhi efisiensi transformator untuk frekuensi tinggi. Kerugian ini dapat dikurangi dengan menggulung lilitan primer dan sekunder secara semi-acak (bank winding)
  4. Kerugian histeresis. Kerugian yang terjadi ketika arus primer AC berbalik arah. Disebabkan karena inti transformator tidak dapat mengubah arah fluks magnetnya dengan seketika. Kerugian ini dapat dikurangi dengan menggunakan material inti reluktansi rendah.
  5. Kerugian efek kulit. Sebagaimana konduktor lain yang dialiri arus bolak-balik, arus cenderung untuk mengalir pada permukaan konduktor. Hal ini memperbesar kerugian kapasitas dan juga menambah resistansi relatif lilitan. Kerugian ini dapat dikurang dengan menggunakan kawat Litz, yaitu kawat yang terdiri dari beberapa kawat kecil yang saling terisolasi. Untuk frekuensi radio digunakan kawat geronggong atau lembaran tipis tembaga sebagai ganti kawat biasa.
  6. Kerugian arus Eddy. Kerugian yang disebabkan oleh ggl masukan yang menimbulkan arus dalam inti magnet yang melawan perubahan fluks magnet yang membangkitkan ggl. Karena adanya fluks magnet yang berubah-ubah, terjadi tolakan fluks magnet pada material inti. Kerugian ini berkurang kalau digunakan inti berlapis-lapis.

Efisiensi

Efisiensi transformator dapat diketahui dengan rumus  Sebagai akibat adanya kerugian pada transformator. Maka efisiensi transformator tidak dapat mencapai 100%. Untuk transformator daya frekuensi rendah, efisiensi bisa mencapai 98%.

Sumber Dari Wikipedia bahasa Indonesia

RESISTOR    CAPASITOR    TRANSISTOR  DIODA   IC   TRAFO

Mengenal Komponen Elektronika : Integrated Circuit (IC)

ic

Pengertian IC (Integrated Circuit) dan Aplikasinya 
Integrated Circuit atau disingkat dengan IC adalah Komponen Elektronika Aktif yang terdiri dari gabungan ratusan, ribuan bahkan jutaan Transistor, Dioda, Resistor dan Kapasitor yang diintegrasikan menjadi suatu Rangkaian Elektronika dalam sebuah kemasan kecil. Bahan utama yang membentuk sebuah Integrated Circuit (IC) adalah Bahan Semikonduktor. Silicon merupakan bahan semikonduktor yang paling sering digunakan dalam Teknologi Fabrikasi Integrated Circuit (IC). Dalam bahasa Indonesia, Integrated Circuit atau IC ini sering diterjemahkan menjadi Sirkuit Terpadu.

Sejarah Singkat IC (Integrated Circuit)

Teknologi Integrated Circuit (IC) atau Sirkuit Terpadu ini pertama kali diperkenalkan pada tahun 1958 oleh Jack Kilby yang bekerja untuk Texas Instrument, setengah tahun kemudian Robert Noyce berhasil melakukan fabrikasi IC dengan sistem interkoneksi pada sebuah Chip Silikon. Integrated Circuit (IC) merupakan salah satu perkembangan Teknologi yang paling signifikan pada abad ke 20.
Sebelum ditemukannya IC, peralatan Elektronik saat itu umumnya memakai Tabung Vakum sebagai komponen utama yang kemudian digantikan oleh Transistor yang memiliki ukuran yang lebih kecil. Tetapi untuk merangkai sebuah rangkaian Elektronika yang rumit dan kompleks, memerlukan komponen Transistor dalam jumlah yang banyak sehingga ukuran perangkat Elektronika yang dihasilkannya pun berukuran besar dan kurang cocok untuk dapat dibawa berpergian (portable).
Teknologi IC (Integrated Circuit) memungkinkan seorang perancang Rangkaian Elektronika untuk membuat sebuah peralatan Elektronika yang lebih kecil, lebih ringan dengan harga yang lebih terjangkau. Konsumsi daya listrik sebuah IC juga lebih rendah dibanding dengan Transistor. Oleh karena itu, IC (Integrated Circuit) telah menjadi komponen Utama pada hampir semua peralatan Elektronika yang kita gunakan saat ini.
Tanpa adanya Teknologi IC (Integrated Circuit) mungkin saat ini kita tidak dapat menikmati peralatan Elektronika Portable seperti Handphone, Laptop, MP3 Player, Tablet PC, Konsol Game Portable, Kamera Digital dan peralatan Elektronika yang bentuknya kecil dan dapat dibawa bepergian kemana-mana.
Dibawah ini adalah gambar IC (Integrated Circuit) dan Simbolnya :
Aplikasi dan Fungsi IC (Integrated Circuit)

Berdasarkan Aplikasi dan Fungsinya, IC (Integrated Circuit) dapat dibedakan menjadi IC Linear, IC Digital dan juga gabungan dari keduanya.

IC Linear

IC Linear atau disebut juga dengan IC Analog adalah IC yang pada umumnya berfungsi sebagai :
  • Penguat Daya (Power Amplifier)
  • Penguat Sinyal (Signal Amplifier)
  • Penguat Operasional (Operational Amplifier / Op Amp)
  • Penguat Sinyal Mikro (Microwave Amplifier)
  • Penguat RF dan IF (RF and IF Amplifier)
  • Voltage Comparator
  • Multiplier
  • Penerima Frekuensi Radio (Radio Receiver)
  • Regulator Tegangan (Voltage Regulator)

IC Digital

IC Digital pada dasarnya adalah rangkaian switching yang tegangan Input dan Outputnya hanya memiliki 2 (dua) level yaitu “Tinggi” dan “Rendah” atau dalam kode binary dilambangkan dengan “1” dan “0”.
IC Digital pada umumnya berfungsi sebagai :
  • Flip-flop
  • Gerbang Logika (Logic Gates)
  • Timer
  • Counter
  • Multiplexer
  • Calculator
  • Memory
  • Clock
  • Microprocessor (Mikroprosesor)
  • Microcontroller
Hal yang perlu dingat bahwa IC (Integrated circuit) merupakan Komponen Elektronika Aktif yang sensitif terhadap pengaruh Electrostatic Discharge (ESD). Jadi, diperlukan penanganan khusus untuk mencegah terjadinya kerusakan pada IC tersebut.

RESISTOR    CAPASITOR    TRANSISTOR   DIODA   IC   TRAFO

Wednesday, 8 May 2013

Mengenal Komponen Elektronika : Dioda (D)

dioda
Sumber gambar dari google

Fungsi Dioda dan Cara mengukurnya 
Dioda (Diode) adalah Komponen Elektronika Aktif yang terbuat dari bahan semikonduktor dan mempunyai fungsi untuk menghantarkan arus listrik ke satu arah tetapi menghambat arus listrik dari arah sebaliknya. Oleh karena itu, Dioda sering dipergunakan sebagai penyearah dalam Rangkaian Elektronika. Dioda pada umumnya mempunyai 2 Elektroda (terminal) yaitu Anoda (+) dan Katoda (-) dan memiliki prinsip kerja yang berdasarkan teknologi pertemuan p-n semikonduktor yaitu dapat mengalirkan arus dari sisi tipe-p (Anoda) menuju ke sisi tipe-n (Katoda) tetapi tidak dapat mengalirkan arus ke arah sebaliknya.

Fungsi Dioda and Jenis-jenisnya

Berdasarkan Fungsi Dioda, Dioda dapat dibagi menjadi beberapa Jenis, diantaranya adalah :
  • Dioda Penyearah (Dioda Biasa atau Dioda Bridge) yang berfungsi sebagai penyearah arus AC ke arus DC.
  • Dioda Zener yang berfungsi sebagai pengaman rangkaian dan juga sebagai penstabil tegangan.
  • Dioda LED yang berfungsi sebagai lampu Indikator ataupun lampu penerangan
  • Dioda Photo yang berfungsi sebagai sensor cahaya
  • Dioda Schottky yang berfungsi sebagai Pengendali

Simbol Dioda

Gambar dibawah ini menunjukan bahwa Dioda merupakan komponen Elektronika aktif yang terdiri dari 2 tipe bahan yaitu bahan tipe-p dan tipe-n :

Prinsip Kerja Dioda

Untuk dapat memperjelas prinsip kerja Dioda dalam menghantarkan dan menghambat aliran arus listrik, dibawah ini adalah rangkaian dasar contoh pemasangan dan penggunaan Dioda dalam sebuah rangkaian Elektronika.

Cara Mengukur Dioda dengan Multimeter

Untuk mengetahui apakah sebuah Dioda dapat bekerja dengan baik sesuai dengan fungsinya, maka diperlukan pengukuran terhadap Dioda tersebut dengan menggunakan Multimeter (AVO Meter).

Cara Mengukur Dioda dengan Multimeter Analog

  1. Aturkan Posisi Saklar pada Posisi OHM (Ω) x1k atau x100
  2. Hubungkan Probe Merah pada Terminal Katoda (tanda gelang)
  3. Hubungkan Probe Hitam pada Terminal Anoda.
  4. Baca hasil Pengukuran di Display Multimeter
  5. Jarum pada Display Multimeter harus bergerak ke kanan
  6. Balikan Probe Merah ke Terminal Anoda dan Probe Hitam pada Terminal Katoda (tanda gelang).
  7. Baca hasil Pengukuran di Display Multimeter
  8. Jarum harus tidak bergerak.
    **Jika Jarum bergerak, maka Dioda tersebut berkemungkinan sudah rusak.


Cara Mengukur Dioda dengan Multimeter Digital

Pada umumnya Multimeter Digital menyediakan pengukuran untuk Fungsi Dioda, Jika tidak ada, maka kita juga dapat mengukur Dioda dengan Fungsi Ohm pada Multimeter Digital.

Cara Mengukur Dioda dengan menggunakan Multimeter Digital
(Fungsi Ohm / Ohmmeter)
  1. Aturkan Posisi Saklar pada Posisi OHM (Ω)
  2. Hubungkan Probe Hitam pada Terminal Katoda (tanda gelang)
  3. Hubungkan Probe Merah pada Terminal Anoda.
  4. Baca hasil pengukuran di Display Multimeter
  5. Display harus menunjukan nilai tertentu (Misalnya 0.64MOhm)
  6. Balikan Probe Hitam ke Terminal Anoda dan Probe Merah ke Katoda
  7. Baca hasil pengukuran di Display Multimeter
  8. Nilai Resistansinya adalah Infinity (tak terhingga) atau Open Circuit.
    **Jika terdapat Nilai tertentu, maka Dioda tersebut berkemungkinan sudah Rusak.

Cara Mengukur Dioda dengan Multimeter Digital
(Menggunakan Fungsi Dioda)
  1. Aturkan Posisi Saklar pada Posisi Dioda
  2. Hubungkan Probe Hitam pada Terminal Katoda (tanda gelang)
  3. Hubungkan Probe Merah pada Terminal Anoda.
  4. Baca hasil pengukuran di Display Multimeter
  5. Display harus menunjukan nilai tertentu (Misalnya 0.42 V)
  6. Balikan Probe Hitam ke Terminal Anoda dan Probe Merah ke Katoda
  7. Baca hasil pengukuran di Display Multimeter
  8. Tidak terdapat nilai tegangan pada Display Multimeter.
    **Jika terdapat Nilai tertentu, maka Dioda tersebut berkemungkinan sudah Rusak.


Catatan Penting :
Hal yang perlu diperhatikan disini adalah Cara Mengukur Dioda dengan menggunakan Multimeter Analog dan Multimeter Digital adalah terbalik. Perhatikan Posisi Probe Merah (+) dan Probe Hitamnya (-).
Cara-cara pengukuran tersebut diatas juga dapat digunakan untuk menentukan Terminal mana yang Katoda dan mana yang Terminal Anoda jika tanda gelang yang tercetak di Dioda tidak dapat dilihat lagi atau terhapus (hilang).

Sumber dari teknikelektronika.com


RESISTOR    CAPASITOR    TRANSISTOR   DIODA   IC   TRAFO

Tuesday, 7 May 2013

Mengenal Komponen Elektronika : Transistor (Q)

transistor
Sumber gambar dari google
Transistor merupakan salah satu jenis komponen elektronika yang memiliki banyak sekali fungsi.Fungsi-fungsi Transistor diantaranya adalah :

  • sebagai Penyearah,
  • sebagai Penguat tegangan dan daya,
  • sebagai Stabilisasi tegangan,
  • sebagai Mixer,
  • sebagai Osilator
  • sebagai Switch (Pemutus dan Penyambung Sirkuit)
Transistor biasanya terdiri dari 3 kaki yaitu Basis (B), Colector (C) dan Emitor (E). 
Berdasarkan strukturnya, Transistor terdiri dari 2 tipe yaitu PNP dan NPN. Contoh jenis transistor adalah :
  • UJT (Uni Junction Transistor)
  • FET (Field Effect Transistor)
  • MOSFET (Metal Oxide Semiconductor FET)

simbol transistor



simbol transistor

Contoh fisik Transistor

transistor














Cara mengukur Transistor
cara mengukur transistor
Sumber gambar dari http://teknikelektronika.com/

Cara Mengukur Transistor PNP dengan Multimeter Analog
  1. Atur Posisi Saklar pada Posisi OHM (Ω) x1k atau x10k
  2. Hubungkan Probe Merah pada Terminal Basis (B) dan Probe Hitam pada Terminal Emitor (E), Jika jarum bergerak ke kanan menunjukan nilai tertentu, berarti Transistor tersebut dalam kondisi baik
  3. Pindahkan Probe Hitam pada Terminal Kolektor (C), jika jarum bergerak ke kanan menunjukan nilai tertentu, berarti Transistor tersebut dalam kondisi baik.
Cara Mengukur Transistor NPN dengan Multimeter Analog
  1. Atur Posisi Saklar pada Posisi OHM (Ω) x1k atau x10k
  2. Hubungkan Probe Hitam pada Terminal Basis (B) dan Probe Merah pada Terminal Emitor (E), Jika jarum bergerak ke kanan menunjukan nilai tertentu, berarti Transistor tersebut dalam kondisi baik
  3. Pindahkan Probe Merah pada Terminal Kolektor (C), jika jarum bergerak ke kanan menunjukan nilai tertentu, berarti Transistor tersebut dalam kondisi baik.
Catatan :
Jika Tata letak Probe dibalikan dari cara yang disebutkan diatas, maka Jarum pada Multimeter Analog harus tidak akan bergerak sama sekali atau “Open”.

RESISTOR    CAPASITOR    TRANSISTOR   DIODA   IC   TRAFO